Awesome heavy metal band, Consinity:
www.ConsinityMusic.com
Data automation and database design services using Excel and Access:
www.AdvancedExcelOptimization.com
...yeah, it's mostly for the SEO.
Monday, July 21, 2014
Monday, June 9, 2014
How to Get a $50K+ Job as a Data Analyst Almost for Free without a College Degree
In today’s world, almost any information you could ever want
to learn is now available for free or very cheap to anyone with a computer.
Meanwhile, in the Western world, higher education (as with most industries that
are primarily run by governments) is continuously becoming more expensive and
less relevant to the actual workplace. One would expect that as the ROI (return
on investment: the ratio of money gained to money spent; you’ll become very
familiar with this concept if you follow the program) of formal education
declines and information becomes increasingly accessible, consumers will turn
to inexpensive books and free online resources for their educational needs
rather than spend tens of thousands of dollars on degree programs that include such
highly useful subjects as “Issues in Sports”, “Music in your Life”, “Literature
and the Occult” and “Movies about Black People” (I don’t remember what the
actual name was), all of which some busybodies in the Florida legislature
decided should be included in my Economics degree.
Thankfully, the prospect of gaining an inexpensive,
relevant, and comparatively quick substitute for a college education is now
more feasible than ever. In order to illustrate this, I’ve put together a “degree”
program for anyone who would like to work in my own professional field of data
analytics. This is a large and rapidly growing field, it is in high demand in
just about every industry, and it faces a constant shortage of qualified
professionals. And, as you will learn in your economics lessons should you
choose to stick with the program, high demand + short supply = big $$. That said,
there is a reason for the short supply: it is difficult and not a lot of people
can do it well. Generally speaking, if you have a head for math, you have a
good chance at succeeding; if not, you probably don’t. Fair warning.
This program assumes a high school graduate level education
to begin. Generally, that means:
- - Math through Algebra 2.
- - If you took Statistics, Calculus, or Linear
Algebra, you’re already ahead of the game. You overachiever.
-
- Decent English composition ability (not directly
relevant, but the ability to write coherently is extremely
valuable). This
includes PROPER GRAMMAR!
-
- Physical Science/Physics is not directly
applicable, but the application of mathematical formulas to
real-world
scenarios is a valuable skill that is quite relevant.
Other than that, feel free to forget your history, science
(of the non-mathematical variety), government, Spanish, French, sociology, etc.
It will do you no good here. I will refer you to a variety of resources; some
of my favorites are:
- - Coursera.org, which offers free, often
interactive, online courses from big name universities.
-
- CodeAcademy.com, which a free, interactive
platform to teach you to write computer programs in the
easiest-to-learn format
I’ve seen anywhere.
-
- Google. If you have trouble understanding
anything, Google it. You’ll find a thousand pages explaining
the same concept
in different ways. One way might work better than another. I suggest you avoid
Wikipedia when possible, as it almost invariably provides the most confusing
explanation humanly
possible.
So, without further ado, here is what you need to know,
along with where to find it and how much it costs.
The Foundation:
1)
Statistics: Measures of central tendency and
deviation, correlation, distribution, linear regression. As of writing this,
Coursera.org offers a course called “Data Analysis and Statistical Inference”,
which contains everything you’ll want to know and more. It also introduces you
to the R programming language, which will be useful. If this is too intense to
start, Udacity.com offers a course as well, as do probably a bunch of other
online resources.
Price: free
2)
Financial Accounting: financial statements,
accounts, credit/debit concepts, financial ratios, depreciation/amortization.
Yes, accounting sucks, but you need to know it. Coursera offers “An
Introduction to Financial Accounting”, which should cover everything you need
to know.
Price: free
3)
Microeconomics: supply and demand, diminishing
marginal utility, diminishing returns to scale, consumer/producer surplus,
economic effects of taxation, fixed/variable/sunk costs, comparative advantage.
Coursera offers a course called “Microeconomics Principles” which should cover
all this.
Price: free
4)
Finance: business ownership structure, time
value of money, asset valuation basics, project valuation basics, cost of
capital. Coursera offers an “Introduction to Finance” that should cover this.
Price: free
5)
Basic Excel, Word, and PowerPoint: Actually,
Word and PowerPoint are so easy and intuitive (for all the things you’ll
probably need; overachievers can get into the more advanced stuff, such as mail
merge in Word), you probably don’t need any instruction at all. Just tinker
with them a bit. We’ll focus on Excel, which is by far the most important
computer program you could possibly know. Mathematical formulas, charts, formatting,
hiding rows/columns, relative/absolute references. There are some nice
tutorials available here: http://chandoo.org/wp/
Price of Tutorials: free
Price of MS Office Professional:
$160 (or free if you download illegally, but I didn’t tell you that)
6)
Basic Coding: If/Then statements, mathematical
operators, For/Next loops, arrays. CodeAcademy.com makes this super easy and
kinda fun (if you’re a nerd). I recommend the Python course.
Price: free
The Specifics:
1)
Intermediate Excel: vlookup, sumif/countif,
pivot tables, advanced charts, data connections.
See the link from the beginner
Excel part.
Price: free
2)
Introduction to Relational Databases: Just watch
this video:
That was easy.
Price: free
3)
Access: creating tables, creating queries,
creating reports, linking tables, importing data from
Excel, update queries,
make table queries. There is a nice tutorial available here:
Price: free for the tutorial;
Access is included in your MS Office Professional from the Excel class.
4)
SQL: select, update, delete, create table,
conditions, inner/outer/left/right joins, group by, order
by, partition by,
data type conversions, subqueries. There is a very easy, interactive course
available at SQLCourse.com. Be sure to take the second, more advanced course as
well. This is
one of the most important items on your agenda, so I highly
recommend creating some practice
databases of your own once you’re finished and
dreaming up the most complicated queries you
can. You can write SQL queries in
Access (which is a bit of a pain), or you can download a
program called MySQL
(Google it) for free.
Price: free
5)
Statistical Data Analysis: advanced regression, decision
trees/random forests, exponential
smoothing, seasonality. There is a lot you
can learn on this topic from various sources; I
recommend the course “Data
Analysis” on Coursera.
Price: You guessed it: free.
Bonus Round (for you overachievers). I’ll let you find the
courses yourself, now that you know where to look:
1)
VBA for Excel and Access (visit
AdvancedExcelOptmization.com for some cool examples of what
VBA can do)
2)
SharePoint
3)
Linear Algebra
4)
Calculus I
5)
Machine Learning
6)
R
There you have it. If you take four of these courses at a
time for three semesters, you’ll have finished the whole regular program in a
year, all for a mere $160. The Bonus Round will take longer (some of these
subjects are hard!), so I recommend taking one at a time during your spare time
while you’re working a lucrative job as a data analyst at a top company.
The last thing I’ll leave you with is a few tips for how to
go about looking for a job once you are overflowing with data knowledge. Most
of these jobs require a bachelor’s degree. Don’t worry; you have something
better. You just need to communicate it. Your resume should list relevant
skills (should include everything you learned here) FIRST, job experience
second, and education LAST. Why? Because employers care a lot more about what
you can do than what pieces of paper you have hanging on your wall. In your
education section, list all of the courses you took (you can include the
tutorials, etc. that don’t really count as “courses”; nobody will know). If you
are currently taking more courses/tutorials as you are applying for jobs (Bonus
Round, anyone?), list those as well under the heading “In Progress”.
Relevant job listings might have the titles “Data Analyst”, “Reporting
Analyst”, “Business Analyst”, or “Statistical Analyst”. You can generally just
search for the word “analyst” on any job board and get a whole bunch of
relevant results. Also, be sure you include all your newfound skills on your
LinkedIn page (if you don’t have one, get one); recruiters are constantly
looking for this skillset and will contact you to offer you jobs if you meet
their criteria.
Good luck, and please leave a comment if you appreciated
this post and/or have other suggestions.
Chris Shupe
Lead Consultant, Advanced Excel Optimization
www.AdvancedExcelOptimization.com
Subscribe to:
Posts (Atom)